U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils



Details

  • Journal Title:
    Soil Biology and Biochemistry
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Soil microbial communities play an essential role in driving multiple functions (i.e., multifunctionality) that are central to the global biogeochemical cycles. Long-term fertilization has been reported to reduce the soil microbial diversity, however, the impact of fertilization on multifunctionality and its relationship with soil microbial diversity remains poorly understood. We used amplicon sequencing and high-throughput quantitative-PCR array to characterize the microbial community compositions and 70 functional genes in a long-term experimental field station with multiple inorganic and organic fertilization treatments. Compared with inorganic fertilization, the application of organic fertilizer improved the soil multifunctionality, which positively correlated with the both bacterial and fungal diversity. Random Forest regression analysis indicated that rare microbial taxa (e.g. Cyanobacteria and Glomeromycota) rather than the dominant taxa (e.g. Proteobacteria and Ascomycota) were the major drivers of multifunctionality, suggesting that rare taxa had an over-proportional role in biological processes. Therefore, preserving the diversity of soil microbial communities especially the rare microbial taxa could be crucial to the sustainable provision of ecosystem functions in the future.
  • Source:
    Soil Biology and Biochemistry, 141, 107686
  • DOI:
  • ISSN:
    0038-0717
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:ebdc4d86fb91f8809f6fcca82e702efc7f95df7a2668ca8dbc0abfdbcaa36146eacc455b3abc91aee6ba121fc2f0815e2300bb5d67644b7b9a457024bdd74adf
  • Download URL:
  • File Type:
    Filetype[PDF - 1.12 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.