The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Surface and tropospheric ozone trends in the Southern Hemisphere since 1990: possible linkages to poleward expansion of the Hadley circulation
-
2019
-
-
Source: Science Bulletin, 64(6), 400-409
Details:
-
Journal Title:Science Bulletin
-
Personal Author:
-
NOAA Program & Office:
-
Description:Increases in free tropospheric ozone over the past two decades are mainly in the Northern Hemisphere that have been widely documented, while ozone trends in the Southern Hemisphere (SH) remain largely unexplained. Here we first show that in-situ and satellite observations document increases of tropospheric ozone in the SH over 1990-2015. We then use a global chemical transport model to diagnose drivers of these trends. We find that increases of anthropogenic emissions (including methane) are not the most significant contributors. Instead, we explain the trend as due to changes in meteorology, and particularly in transport patterns. We propose a possible linkage of the ozone increases to meridional transport pattern shifts driven by poleward expansion of the SH Hadley circulation (SHHC). The SHHC poleward expansion allows more downward transport of ozone from the stratosphere to the troposphere at higher latitudes, and also enhances tropospheric ozone production through stronger lifting of tropical ozone precursors to the upper troposphere. These together may lead to increasing tropospheric ozone in the extratropical SH, particularly in the middle/upper troposphere and in austral autumn. Poleward expansion of the Hadley circulation is partly driven by greenhouse warming, and the associated increase in tropospheric ozone potentially provides a positive climate feedback amplifying the warming that merits further quantification.
-
Source:Science Bulletin, 64(6), 400-409
-
DOI:
-
ISSN:2095-9273
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Accepted Manuscript
-
Rights Statement:The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: