Fungal community dynamics associated with harmful cyanobacterial blooms in two Great Lakes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Fungal community dynamics associated with harmful cyanobacterial blooms in two Great Lakes

Filetype[PDF-1.38 MB]



Details:

  • Journal Title:
    Journal of Great Lakes Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Harmful algal blooms (HABs) impose major costs on aquatic ecosystems worldwide, including the Laurentian Great Lakes. Microbial consumers, including fungi, can have important interactions with bloom-forming algae and cyanobacteria, although relatively few studies have investigated the relationship between fungi and HABs. We examined changes in the aquatic fungal community coincident with the occurrence of large cyanobacterial blooms in two areas of the Great Lakes (western Lake Erie and Saginaw Bay, Lake Huron). We collected water samples over the course of bloom development, peak, and decline from 3 sites in western Lake Erie on 11 dates and 2 sites in Saginaw Bay on 4 dates. Single molecule sequencing (PacBio RS II) with two molecular markers (the internal transcribed spacer (ITS) of the rRNA locus using fungal-specific primers and the 18S rRNA with primers targeting early-diverging lineages of fungi) was used to estimate fungal community composition. Results indicate a diverse fungal community within the lakes, including several major fungal phyla. The Chytridiomycota were particularly well-represented (54.8% and 45.4% of ITS and 18S sequences, respectively), and we also found representation from both Cryptomycota and Aphelidiomycota, which are putatively obligate intracellular parasites. Further, we found associations between the fungal community (alpha diversity; community composition) and measures of bloom magnitude (chlorophyll a, phycocyanin, and microcystin concentrations) in western Lake Erie. Our results suggest potentially important spatial and temporal heterogeneity in the fungal community that motivates further research on functional importance of fungi in the Great Lakes and consequences for HABs and freshwater ecosystems more broadly.
  • Source:
    Journal of Great Lakes Research, 48(4), 1021-1031
  • DOI:
  • ISSN:
    0380-1330
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY-NC-ND
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1