U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Depth drives growth dynamics of dreissenid mussels in Lake Ontario



Details

  • Journal Title:
    Journal of Great Lakes Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Understanding dreissenid mussel population dynamics and their impacts on lake ecosystems requires quantifying individual growth across a range of habitats. Most dreissenid mussel growth rates have been estimated in nutrient rich or nearshore environments, but mussels have continued to expand into deep, cold, low-nutrient habitats of the Great Lakes. We measured annual quagga mussel (Dreissena rostriformis bugensis) growth at 15 m, 45 m, and 90 m in Lake Ontario using caged mussels near Oswego, New York, USA from June 2018 to May 2019. Quagga mussel growth (starting size 12 mm) was greatest at 15 m (mean shell length increase = 10.2 mm), and was lower at 45 m (5.9 mm) and 90 m (0.7 mm). Caged mussels were obtained from near the 90-m site and those reared at 15 and 45 m developed thicker shells than those that were caged at 90 m. We observed relatively high colonization by quagga and, to a lesser degree, zebra mussels (Dreissena polymorpha) at 15 m, very few colonizers at 45 m, and none at 90 m. Higher growth potential, but low natural mussel densities observed at 15 m and 45 m suggest factors other than growth limit dreissenid abundance at these depths. The relatively slow dreissenid growth rates observed in offshore habitats are consistent with the gradual abundance increases documented in these zones across the Great Lakes and suggest new mussels that become established in these habitats may contribute to ecosystem effects for decades.
  • Source:
    Journal of Great Lakes Research, 48(2), 289-299
  • DOI:
  • ISSN:
    0380-1330
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:9ec3fa1ef9598a20861c9876820c5489434b3b4827ba937e49caff285a79c3f0b31da3e5f3ef9577eccbb304db6f522c016a8219a69ae6da891034ed3fe4dac3
  • Download URL:
  • File Type:
    Filetype[PDF - 1.06 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.