Probabilistically assessing the role of nutrient loading in harmful algal bloom formation in western Lake Erie
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Probabilistically assessing the role of nutrient loading in harmful algal bloom formation in western Lake Erie

Filetype[PDF-1.80 MB]



Details:

  • Journal Title:
    Journal of Great Lakes Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Harmful algal blooms (HABs) have increased in frequency and magnitude in western Lake Erie and spring phosphorus (P) load was shown to be a key driver of bloom intensity. A recently developed Bayesian hierarchical model that predicts peak bloom size as a function of Maumee River phosphorus load suggested an apparent increased susceptibility of the lake to HABs. We applied that model to develop load–response curves to inform revision of Lake Erie phosphorus load targets under the 2012 Great Lakes Water Quality Agreement. In this application, the model was modified to estimate the fraction of the particulate P (PP) load that becomes bioavailable, and it was recalibrated with additional bloom observations. Although the uncertainty surrounding the estimate of the bioavailable PP fraction is large, inclusion in the model improves prediction of bloom variability compared to dissolved reactive P (DRP) alone. The ability to characterize model and measurement uncertainty through hierarchical modeling allowed us to show that inconsistencies in bloom measurement represent a considerable portion of the overall uncertainty associated with load–response curves. The updated calibration also lends support to the system's apparent enhanced susceptibility to blooms. The temporal trend estimated by the model results in an upward shift of the load–response curve over time such that a larger load reduction is required to achieve a target bloom size today compared to earlier years. More research is needed to further test the hypothesis of a shift in the lake's response to stressors over time and, if confirmed, to explore underlying mechanisms.
  • Source:
    Journal of Great Lakes Research, 42(6), 1184-1192
  • DOI:
  • ISSN:
    0380-1330
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1