The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Effect of Prudhoe Bay emissions on atmospheric aerosol growth events observed in Utqiaġvik (Barrow), Alaska
-
2017
-
-
Source: Atmospheric Environment, 152, 146-155
Details:
-
Journal Title:Atmospheric Environment
-
Personal Author:
-
NOAA Program & Office:
-
Description:The Arctic is a rapidly changing ecosystem, with complex aerosol-cloud-climate feedbacks contributing to more rapid warming of the region as compared to the mid-latitudes. Understanding changes to particle number concentration and size distributions is important to constraining estimates of the effect of anthropogenic activity on the region. During six years of semi-continuous measurements of particle number size distributions conducted near Utqiaġvik (Barrow), Alaska, 37 particle-growth events were observed. The majority of events occurred during spring and summer with a monthly maximum in June, similar to other Arctic sites. Based on backward air mass trajectory analysis, similar numbers of particle-growth events were influenced by marine (46%) and Prudhoe Bay air masses (33%), despite air primarily coming from the Arctic Ocean (75 ± 2% of days) compared to Prudhoe Bay (8 ± 2% of days). The corresponding normalized particle-growth event frequency suggests that emissions from Prudhoe Bay could induce an average of 92 particle-growth events, more than all other air mass sources combined, at Barrow annually. Prudhoe Bay is currently the third largest oil and gas field in the United States, and development in the Arctic region is expected to expand throughout the 21st century as the extent of summertime sea ice decreases. Elevated particle number concentrations due to human activity are likely to have profound impacts on climate change in the Arctic through direct, indirect, and surface albedo feedbacks, particularly through the addition of cloud condensation nuclei.
-
Source:Atmospheric Environment, 152, 146-155
-
DOI:
-
ISSN:1352-2310
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Accepted Manuscript
-
Rights Statement:The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: