Overcoming early career barriers to interdisciplinary climate change research
-
2018
-
Details
-
Journal Title:WIREs Climate Change
-
Personal Author:
-
NOAA Program & Office:
-
Description:Climate-change impacts are among the most serious and complex challenges facing society, affecting both natural and social systems. Addressing these requires a new paradigm of interdisciplinary collaboration which incorporates tools, techniques, and insights from across the social, natural, and engineering sciences. Yet, a wide range of intrinsic and extrinsic hurdles need to be overcome to conduct successful, integrated interdisciplinary research. The results of a bibliometric analysis and survey of early to mid-career scientists from 56 countries who were involved with the interdisciplinary DISsertations initiative for the advancement of Climate Change ReSearch (DISCCRS) emphasize the particular challenges faced by early career researchers. Survey respondents perceive conflict between the need for interdisciplinary climate-change research and its potential detriment to career advancement. However, participation in interventions for early career scientists, such as networking and training symposia, had both perceived and measurable impacts on the likelihood of engagement in climate-centric interdisciplinary research. Respondents also ranked alternative mechanisms for encouraging incorporation of interdisciplinary science at early career stages, prioritizing funding of interdisciplinary seed grants, fellowships, and junior faculty networks, interdisciplinary teamwork and communication training, and interdepartmental symposia. To this we add the suggestion that interdisciplinarity be incorporated into tenure and promotion evaluations through the use of exploratory science mapping tools. Despite the need to foster interdisciplinary research and the availability of multiple prospective solutions, there remain expansive structural challenges to its promotion and recognition which, unless collectively addressed, will continue to hinder its potential growth and application to climate-change science.
-
Source:WIREs Climate Change, 9(5)
-
DOI:
-
ISSN:1757-7780 ; 1757-7799
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Accepted Manuscript
-
Rights Statement:The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
-
Compliance:Library
-
Main Document Checksum:urn:sha-512:5f19acb88f546d7d4eb45dd854dc143e83541d8c2e8480db3fbf005bca086436d892bbcbaec114b4ed7312ed2b83e84766ba9f202bab3fdc27a86f743cf9c72f
-
Download URL:
-
File Type:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like