Illuminating wildfire erosion and deposition patterns with repeat terrestrial lidar
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Illuminating wildfire erosion and deposition patterns with repeat terrestrial lidar

Filetype[PDF-3.07 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Earth Surface
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Erosion following a wildfire is much greater than background erosion in forests because of wildfire‐induced changes to soil erodibility and water infiltration. While many previous studies have documented post‐wildfire erosion with point and small plot‐scale measurements, the spatial distribution of post‐fire erosion patterns at the watershed scale remains largely unexplored. In this study lidar surveys were collected periodically in a small, first‐order drainage basin over a period of 2 years following a wildfire. The study site was relatively steep with slopes ranging from 17° to > 30°. During the study period, several different types of rain storms occurred on the site including low‐intensity frontal storms (2.4 mm h−1) and high‐intensity convective thunderstorms (79 mm h−1). These storms were the dominant drivers of erosion. Erosion resulting from dry ravel and debris flows was notably absent at the site. Successive lidar surveys were subtracted from one another to obtain digital maps of topographic change between surveys. The results show an evolution in geomorphic response, such that the erosional response after rain storms was strongly influenced by the previous erosional events and pre‐fire site morphology. Hillslope and channel roughness increased over time, and the watershed armored as coarse cobbles and boulders were exposed. The erosional response was spatially nonuniform; shallow erosion from hillslopes (87% of the study area) contributed 3 times more sediment volume than erosion from convergent areas (13% of the study area). However, the total normalized erosion depth (volume/area) was highest in convergent areas. From a detailed understanding of the spatial locations of erosion, we made inferences regarding the processes driving erosion. It appears that hillslope erosion is controlled by rain splash (for detachment) and overland flow (for transport and quasi‐channelized erosion), with the sites of highest erosion corresponding to locations with the lowest roughness. By contrast, in convergent areas we found erosion caused by overland flow. Soil erosion was locally interrupted by immobile objects such as boulders, bedrock, or tree trunks, resulting in a patchy erosion network with increasing roughness over time.
  • Source:
    Journal of Geophysical Research: Earth Surface, 121(3), 588-608
  • DOI:
  • ISSN:
    2169-9003;2169-9011;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1