Vertical Profile Climatology of Polarimetric Radar Variables and Retrieved Microphysical Parameters in Synoptic and Lake Effect Snowstorms
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Vertical Profile Climatology of Polarimetric Radar Variables and Retrieved Microphysical Parameters in Synoptic and Lake Effect Snowstorms

Filetype[PDF-9.21 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study derives polarimetric radar vertical profiles and microphysical retrievals for 25 Synoptic Snow (SS) and 23 Lake Effect Snow (LES) cases using the Range‐Defined Quasi‐Vertical Profiles (RD‐QVP), Columnar Vertical Profiles (CVP), and Process‐oriented Vertical Profiles (POVP) methods. For all vertical profile techniques, SS cases exhibit a near‐linear increase in reflectivity from −30 to 0°C whereas ZDR and Kdp locally peak in the dendritic growth layer. LES cases universally exhibit negative ZDR, rather high Z, negligible Kdp, and near‐unity ρhv. Ground measurements from the past OWLeS campaign provide direct evidence that conical graupel may strongly affect these polarimetric measurements in LES bands. Aggregation efficiencies for SS cases are estimated by optimizing the theoretical number concentration (Nt) and mean volume diameter (Dm) steady‐state vertical profiles against radar‐retrieved profiles derived from 20 of the 25 synoptic storm RD‐QVPs. The median estimated aggregation efficiency is approximately 0.15 with a relatively narrow interquartile range that spans from 0.1 to just over 0.2. Values of optimized aggregation efficiencies are nearly independent of the assumed gamma distribution shape parameter. These results are used to derive temperature‐dependent, climatological steady‐state relations for vertical profiles of Nt, Dm, and liquid‐equivalent snowfall rates. These results can be used in numerical weather prediction model aggregation parameterizations and can also provide climatologically representative vertical profiles of radar and microphysical quantities.
  • Source:
    Journal of Geophysical Research: Atmospheres, 129(18)
  • DOI:
  • ISSN:
    2169-897X;2169-8996;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1