The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Validation of Cool-Season Snowfall Forecasts at a High-Elevation Site in Utah’s Little Cottonwood Canyon
-
2024
-
-
Source: Weather and Forecasting, 39(9), 1261-1277
Details:
-
Journal Title:Weather and Forecasting
-
Personal Author:
-
NOAA Program & Office:
-
Description:Producing a quantitative snowfall forecast (QSF) typically requires a model quantitative precipitation forecast (QPF) and snow-to-liquid ratio (SLR) estimate. QPF and SLR can vary significantly in space and time over complex terrain, necessitating fine-scale or point-specific forecasts of each component. Little Cottonwood Canyon (LCC) in Utah’s Wasatch Range frequently experiences high-impact winter storms and avalanche closures that result in substantial transportation and economic disruptions, making it an excellent testbed for evaluating snowfall forecasts. In this study, we validate QPFs, SLR forecasts, and QSFs produced by or derived from the Global Forecast System (GFS) and High-Resolution Rapid Refresh (HRRR) using liquid precipitation equivalent (LPE) and snowfall observations collected during the 2019/20–2022/23 cool seasons at the Alta–Collins snow-study site (2945 m MSL) in upper LCC. The 12-h QPFs produced by the GFS and HRRR underpredict the total LPE during the four cool seasons by 33% and 29%, respectively, and underpredict 50th, 75th, and 90th percentile event frequencies. Current operational SLR methods exhibit mean absolute errors of 4.5–7.7. In contrast, a locally trained random forest algorithm reduces SLR mean absolute errors to 3.7. Despite the random forest producing more accurate SLR forecasts, QSFs derived from operational SLR methods produce higher critical success indices since they exhibit positive SLR biases that offset negative QPF biases. These results indicate an overall underprediction of LPE by operational models in upper LCC and illustrate the need to identify sources of QSF bias to enhance QSF performance. Significance Statement Winter storms in mountainous terrain can disrupt transportation and threaten life and property due to road snow and avalanche hazards. Snow-to-liquid ratio (SLR) is an important variable for snowfall and avalanche forecasts. Using high-quality historical snowfall observations and atmospheric analyses, we developed a machine learning technique for predicting SLR at a high mountain site in Utah’s Little Cottonwood Canyon that is prone to closure due to winter storms. This technique produces improved SLR forecasts for use by weather forecasters and snow-safety personnel. We also show that current operational models and SLR techniques underforecast liquid precipitation amounts and overforecast SLRs, respectively, which has implications for future model development.
-
Source:Weather and Forecasting, 39(9), 1261-1277
-
DOI:
-
ISSN:0882-8156;1520-0434;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: