The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Exploring a Data‐Driven Approach to Identify Regions of Change Associated With Future Climate Scenarios
-
2024
-
-
Source: Journal of Geophysical Research: Machine Learning and Computation, 1(4)
Details:
-
Journal Title:Journal of Geophysical Research: Machine Learning and Computation
-
Personal Author:
-
NOAA Program & Office:
-
Description:A key consideration for evaluating climate projections is uncertainty in future radiative forcing scenarios. Although it is straightforward to monitor greenhouse gas concentrations and compare observations with specified climate scenarios, it remains less obvious how to detect and attribute regional pattern changes with plausible future mitigation scenarios. Here we introduce a machine learning approach for linking patterns of climate change with radiative forcing scenarios and use a feature attribution method to understand how these linkages are made. We train a neural network using output from the SPEAR Large Ensemble to classify whether temperature or precipitation maps are most likely to originate from one of several potential radiative forcing scenarios. Despite substantial atmospheric internal variability, the neural network learns to identify “fingerprint” patterns, including significant localized regions of change, that associate specific patterns of climate change with radiative forcing scenarios in each year of the simulations. We illustrate this using output from additional ensembles with sharp reductions in future greenhouse gases and highlight specific regions (in this example, the subpolar North Atlantic and Central Africa) that are critical for associating the new simulations with changes in radiative forcing scenarios. Overall, this framework suggests that explainable machine learning could provide one strategy for detecting a regional climate response to future mitigation efforts.
-
Source:Journal of Geophysical Research: Machine Learning and Computation, 1(4)
-
DOI:
-
ISSN:2993-5210;2993-5210;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: