The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
The role of in situ ocean data assimilation in ECMWF subseasonal forecasts of sea‐surface temperature and mixed‐layer depth over the tropical Pacific ocean
-
2023
-
-
Source: Quarterly Journal of the Royal Meteorological Society, 149(757), 3513-3524
Details:
-
Journal Title:Quarterly Journal of the Royal Meteorological Society
-
Personal Author:
-
NOAA Program & Office:
-
Description:The tropical Pacific plays an important role in modulating the global climate through its prevailing sea‐surface temperature spatial structure and dominant climate modes like El Niño–Southern Oscillation (ENSO), the Madden–Julian Oscillation (MJO), and their teleconnections. These modes of variability, including their oceanic anomalies, are considered to provide sources of prediction skill on subseasonal timescales in the Tropics. Therefore, this study aims to examine how assimilating in situ ocean observations influences the initial ocean sea‐surface temperature (SST) and mixed‐layer depth (MLD) and their subseasonal forecasts. We analyze two subseasonal forecast systems generated with the European Centre for Medium‐Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), where the ocean states were initialized using two Observing‐System Experiment (OSE) reanalyses. We find that the SST differences between forecasts with and without ocean data assimilation grow with time, resulting in a reduced cold‐tongue bias when assimilating ocean observations. Two mechanisms related to air–sea coupling are considered to contribute to this growth of SST differences. One is a positive feedback between the zonal SST gradient, pressure gradient, and surface wind. The other is the difference in Ekman suction and mixing at the Equator due to surface wind‐speed differences. While the initial mixed‐layer depth (MLD) can be improved through ocean data assimilation, this improvement is not maintained in the forecasts. Instead, the MLD in both experiments shoals rapidly at the beginning of the forecast. These results emphasize how initialization and model biases influence air–sea interaction and the accuracy of subseasonal forecasts in the tropical Pacific.
-
Source:Quarterly Journal of the Royal Meteorological Society, 149(757), 3513-3524
-
DOI:
-
ISSN:0035-9009;1477-870X;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Accepted Manuscript
-
Rights Statement:The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: