waveSZ
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

waveSZ

Filetype[PDF-5.52 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Error-bounded lossy compression is critical to the success of extreme-scale scientific research because of ever-increasing volumes of data produced by today's high-performance computing (HPC) applications. Not only can error-controlled lossy compressors significantly reduce the I/O and storage burden but they can retain high data fidelity for post analysis. Existing state-of-the-art lossy compressors, however, generally suffer from relatively low compression and decompression throughput (up to hundreds of megabytes per second on a single CPU core), which considerably restrict the adoption of lossy compression by many HPC applications especially those with a fairly high data production rate. In this paper, we propose a highly efficient lossy compression approach based on field programmable gate arrays (FPGAs) under the state-of-the-art lossy compression model SZ. Our contributions are fourfold. (1) We adopt a wavefront memory layout to alleviate the data dependency during the prediction for higher-dimensional predictors, such as the Lorenzo predictor. (2) We propose a co-design framework named waveSZ based on the wavefront memory layout and the characteristics of SZ algorithm and carefully implement it by using high-level synthesis. (3) We propose a hardware-algorithm co-optimization method to improve the performance. (4) We evaluate our proposed waveSZ on three real-world HPC simulation datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and FPGAs. Experiments show that our waveSZ can improve SZ's compression throughput by 6.9X ~ 8.7X over the production version running on a state-of-the-art CPU and improve the compression ratio and throughput by 2.1X and 5.8X on average, respectively, compared with the state-of-the-art FPGA design.
  • Source:
    Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (2020)
  • DOI:
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +
Version 3.27.1