Development and Assessment of the Systematically Merged Pacific Ocean Regional Temperature and Salinity (SPORTS) Climatology for Ocean Heat Content Estimations
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Development and Assessment of the Systematically Merged Pacific Ocean Regional Temperature and Salinity (SPORTS) Climatology for Ocean Heat Content Estimations

Filetype[PDF-1.69 MB]



Details:

  • Journal Title:
    Journal of Atmospheric and Oceanic Technology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A Systematically Merged Pacific Ocean Regional Temperature and Salinity (SPORTS) climatology was created to estimate ocean heat content (OHC) for tropical cyclone (TC) intensity forecasting and other applications. A technique similar to the creation of the Systematically Merged Atlantic Regional Temperature and Salinity (SMARTS) climatology was used to blend temperature and salinity fields from the Generalized Digital Environment Model and World Ocean Atlas 2001 at a 0.25° resolution. The weights for the blending of these two climatologies were estimated by minimizing residual covariances across the basin. Drift velocities associated with eddy variability were accounted for using a series of 3-yr sea surface height anomalies (SSHA) to ensure continuity between the periods of different altimeters. In addition to producing daily estimates of the 20° and 26°C isotherm depths, mixed-layer depth, and OHC, the model produces mapping errors from the optimal interpolation of the SSHA due to gaps in altimeter track coverage and sensor uncertainties.Using SPORTS with satellite-derived sea surface temperature (SST) and SSHA fields from radar altimetry, daily OHC was estimated from 2000 to 2011 using a 2.5-layer model approach. Argo profiling floats, expendable probes from ships and aircraft, long-term Tropical Atmosphere Ocean (TAO) moorings, and drifters provide more than 267 000 quality controlled in situ thermal profiles to assess uncertainty in estimates from SPORTS. This carefully constructed climatology creates an accurate estimation of OHC from satellite-based measurements, which can then be used in TC intensity forecasts in the North Pacific Ocean and analysis of ocean thermodynamics. The SPORTS time and space series extends from 1998 to 2016, forming a 19-yr dataset by the end of 2016.
  • Source:
    Journal of Atmospheric and Oceanic Technology, 33(10), 2259-2272
  • DOI:
  • ISSN:
    0739-0572;1520-0426;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1