The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
A multiscale assessment of the springtime U.S. mesoscale convective systems in the NOAA GFDL AM4
-
2024
-
-
Source: Climate Dynamics (2024) 62:4017–4030
Details:
-
Journal Title:Climate Dynamics
-
Personal Author:
-
NOAA Program & Office:
-
Description:This study presents a multiscale assessment of the springtime U.S. Mesoscale Convective Systems (MCSs) in the NOAA Geophysical Fluid Dynamics Laboratory (GFDL)’s Atmosphere Model version 4 (AM4). In AM4, MCSs exhibit lower intensity but longer duration, producing more precipitation compared to observation. The overall MCS activity demonstrates a “location bias” with its peak shifting from the Southern Great Plains to the Midwest in AM4, causing an eastward shift in associated precipitation. However, the dry bias of MCS precipitation over the Great Plains due to this shift is compensated by additional precipitation from amplified extratropical cyclone activities. Further analysis reveals that AM4 effectively reproduces the spatiotemporal distribution and relative frequency contribution of large-scale forcing patterns driving MCS genesis. The MCS location bias emerges under all forms of large-scale forcing patterns and is further attributed to local dynamic and thermodynamic factors including weaker surface lows, eastward-shifted fronts, and suppressed low-level jets (LLJs). Here we argue that the MCS location bias results from AM4 biases in both synoptic-mesoscale anomalies (i.e., fronts and LLJs) and seasonal mean circulations. The lack of two-way air-sea interaction in AM4 creates a hemispheric-scale sea level pressure bias, which is ultimately responsible for a seasonal mean northerly bias in lower-tropospheric winds and the subsequent weakening of LLJs. The existence of such biases in prescribed sea surface temperature (SST) experiments implies the need for extra caution when utilizing extended-range forecasts for MCSs over the continental U.S.
-
Keywords:
-
Source:Climate Dynamics (2024) 62:4017–4030
-
DOI:
-
Format:
-
Document Type:
-
Funding:
-
Rights Information:Accepted Manuscript
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: