Satellite-Based Assessment of Rocket Launch and Coastal Change Impacts on Cape Canaveral Barrier Island, Florida, USA
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Satellite-Based Assessment of Rocket Launch and Coastal Change Impacts on Cape Canaveral Barrier Island, Florida, USA

Filetype[PDF-15.73 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The Cape Canaveral Barrier Island, home to the National Aeronautics and Space Administration (NASA)’s Kennedy Space Center and the United States (U.S.) Space Force’s Cape Canaveral Space Force Station, is situated in a unique ecological transition zone that supports diverse wildlife. This study evaluates the recent changes in vegetation cover (2016–2023) and dune elevation (2007–2017) within the Cape Canaveral Barrier Island using high-resolution optical satellite and light detection and ranging (LiDAR) data. The study period was chosen to depict the time period of a recent increase in rocket launches. The study objectives include assessing changes in vegetation communities, identifying detectable impacts of liquid propellant launches on nearby vegetation, and evaluating dune elevation and tide level shifts near launchpads. The results indicate vegetation cover changes, including mangrove expansion in wetland areas and the conversion of coastal strands to denser scrubs and hardwood forests, which were likely influenced by mild winters and fire management. While detectable impacts of rocket launches on nearby vegetation were observed, they were less severe than those caused by solid rocket motors. Compounding challenges, such as rising tide levels, beach erosion, and wetland loss, potentially threaten the resilience of launch operations and the surrounding habitats. The volume and scale of launches continue to increase, and a balance between space exploration and ecological conservation is required in this biodiverse region. This study focuses on the assessment of barrier islands’ shorelines.
  • Source:
    Remote Sensing, 16(23), 4421
  • DOI:
  • ISSN:
    2072-4292
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.2