The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Extreme Rainfall Risk in Hurricane Ida’s Extratropical Stage: An Analysis with Convection-Permitting Ensemble Hindcasts
-
2024
-
-
Source: Journal of the Atmospheric Sciences, 81(7), 1165-1179
Details:
-
Journal Title:Journal of the Atmospheric Sciences
-
Personal Author:
-
NOAA Program & Office:
-
Description:The extratropical stage of Hurricane Ida (2021) brought extreme subdaily rainfall and devastating flooding to parts of eastern Pennsylvania, New Jersey, and New York. We investigate the predictability and character of this event using 31-member ensembles of perturbed initial condition hindcasts with the Tropical Atlantic version of GFDL’s System for High-resolution prediction on Earth-to-Local Domains (T-SHiELD), a ∼13-km global weather forecast model with a ∼3-km nested grid. At lead times of up to 4 days, the ensembles are able to capture the most extreme observed hourly and daily rainfall accumulations but are negatively biased in the spatial extent of heavy precipitation. Large intraensemble differences in the magnitudes and locations of simulated extremes suggest that although impacts were highly localized, risks were widespread. In Ida’s tropical stage, interensemble spread in extreme hourly rainfall is well predicted by large-scale moisture convergence; by contrast, in Ida’s extratropical stage, the most extreme rainfall is governed by mesoscale processes that exhibit chaotic and diverse forms across the ensembles. Our results are relevant to forecasting and communication in advance of extratropical transition and imply that flood preparedness efforts should account for the widespread possibility of severe localized impacts.
-
Source:Journal of the Atmospheric Sciences, 81(7), 1165-1179
-
DOI:
-
ISSN:0022-4928;1520-0469;
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: