The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Atmospheric Precursors of Skillful SST Prediction in the Northeast Pacific
-
2024
-
-
Source: Journal of Climate, 37(20), 5337-5353
Details:
-
Journal Title:Journal of Climate
-
Personal Author:
-
NOAA Program & Office:
-
Description:Forecasts of sea surface temperature anomalies (SSTAs) provide essential information to stakeholders of marine resources in coastal ecosystems, such as the California Current Large Marine Ecosystem (CCLME), at management-relevant monthly-to-annual time scales. Diagnosing dynamical sources of predictability and the mechanisms differentiating skill among forecasts is required for verification and improvement in operational forecasting systems. Using retrospective forecasts (1982–2020) from a four-member subset of the North American Multi-Model Ensemble (NMME), we evaluate the conditional skill of SSTA forecasts in the CCLME at monthly resolution for lead times up to 10.5 months. Forecasts from ensemble members with relatively small SSTA errors at shorter lead times retain higher skill at longer lead times, with the most substantial and long-lasting increases for forecasts initialized in the fall and early spring. The “best” low-error SSTA forecasts are characterized by increased skill in the prediction of North Pacific atmospheric circulation [sea level pressure (SLP) and 200-hPa geopotential height] the month prior to the evaluation of SSTA errors in the CCLME and exhibit more realistic progressions of anomalous SLP. The Pacific meridional mode (PMM) emerges as a diagnostic of skillful North Pacific atmosphere–ocean coupling, as forecasts that correctly simulate the PMM and its associated SLP variability increase the SSTA prediction skill in the CCLME in the fall through spring. Predictable coupled ocean–atmosphere modes provide a target for enhancing predictability with early detection of the onset of a deterministic progression emerging from stochastic atmospheric variability.
-
Source:Journal of Climate, 37(20), 5337-5353
-
DOI:
-
ISSN:0894-8755;1520-0442;
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: