Elevated total mercury (THg) levels in water sources under the influence of artisanal and small-scale gold mining (ASGM) in Tanzania
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Elevated total mercury (THg) levels in water sources under the influence of artisanal and small-scale gold mining (ASGM) in Tanzania

Filetype[PDF-1.12 MB]



Details:

  • Journal Title:
    Environmental Monitoring and Assessment
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study investigated the presence and distribution of mercury in water bodies under the influence of artisanal and small-scale mining (ASGM) activities in Tanzania, which continue to predominantly rely on mercury for gold extraction. Various water bodies available for domestic and animal use in mining communities were sampled from surface water sources in ASGM settlements during the rainy and dry seasons. Water samples were analysed using cold vapour atomic fluorescence spectrophotometer (CVAFS). The results indicate that most of water sources had THg levels above the WHO guideline of 1.0 µg/L (1000 ng/L) for safe drinking water. The levels were significantly higher during the wet season ranging from 3.4 to 96.3 µg/L, whereas the range was from 0.84 to 2.12 µg/L during the dry period. The higher THg values during the wet season are likely a result of increased lateral transport (e.g. via enhanced runoff) and physical properties of the waterways. Transportation and resuspension of matrix-bound mercury from surface soils and inflow of contaminated water from unprotected tailings were also observed to be potential means of lateral mercury transport. The lowest concentrations (0.846 µg/L) were observed in water samples from the Mabubi River, upstream of a mining village. Downstream of the mining village in the same river, higher concentrations were observed in the Nungwe Bay region of Lake Victoria. In other surveyed mining settlements where there were no nearby rivers, pool water indicated high concentrations of THg, including levels above thresholds for safe human use. Immediate stringent measures are needed in order to ensure human and animal safety at ASGM mining settlements. Future investigation is suggested to focus on the distribution of mercury in different media, assessing the prevalence of different mercury species, and investigating the influence of weather and hydrological conditions on the impacts of mercury to organisms as part of the strategies to mitigate mercury pollution.
  • Source:
    Environmental Monitoring and Assessment, 196(11)
  • DOI:
  • ISSN:
    0167-6369;1573-2959;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1