U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Rainfall from tropical cyclones: high-resolution simulations and seasonal forecasts



Details

  • Journal Title:
    Climate Dynamics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study examines the performance of the Geophysical Fluid Dynamics Laboratory Forecast-Oriented Low Ocean Resolution version of CM2.5 (FLOR; ~ 50-km mesh) and high-resolution FLOR (HiFLOR; ~ 25-km mesh) in reproducing the climatology and interannual variability in rainfall associated with tropical cyclones (TCs) in both sea surface temperature (SST)-nudging and seasonal-forecast experiments. Overall, HiFLOR outperforms FLOR in capturing the observed climatology of TC rainfall, particularly in East Asia, North America and Australia. In general, both FLOR and HiFLOR underestimate the observed TC rainfall in the coastal regions along the Bay of Bengal, connected to their failure to accurately simulate the bimodal structure of the TC genesis seasonality. A crucial factor in capturing the climatology of TC rainfall by the models is the simulation of the climatology of spatial TC density. Overall, while HiFLOR leads to a better characterization of the areas affected by TC rainfall, the SST-nudging and seasonal-forecast experiments with both models show limited skill in reproducing the year-to-year variation in TC rainfall. Ensemble-based estimates from these models indicate low potential skill for year-to-year variations in TC rainfall, yet the models show lower skill than this. Therefore, the low skill for interannual TC rainfall in these models reflects both a fundamental limit on predictability/reproducibility of seasonal TC rainfall as well as shortcomings in the models.
  • Source:
    Climate Dynamics, 52(9-10), 5269-5289
  • DOI:
  • ISSN:
    0930-7575 ; 1432-0894
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:bcada801f7e226bf3830c09169d8d5513b77f24da3bc8ce893081e3650794aec28d7f21d8c94324d877a05ccaac7398d87f35708a1df3081aea66a5a3ebe4de8
  • Download URL:
  • File Type:
    Filetype[PDF - 3.85 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.