Estimation of Wind Direction in Tropical Cyclones Using C-Band Dual-Polarization Synthetic Aperture Radar
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Estimation of Wind Direction in Tropical Cyclones Using C-Band Dual-Polarization Synthetic Aperture Radar

Filetype[PDF-2.76 MB]



Details:

  • Journal Title:
    IEEE Transactions on Geoscience and Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Under extreme weather conditions, the imprints of kilometer-scale marine atmospheric boundary layer roll vortices on the ocean surface are clearly visible in synthetic aperture radar (SAR) images of storms. Therefore, information about wind direction in storms can be obtained by analyzing SAR image features caused by boundary layer rolls. VH-polarized SAR imagery captures the structural features of storms well and shows prominent image gradients along the radial directions of the storm. The signal-to-noise ratios of VH-polarized images are small in low wind speed areas, but they are large in the same regions of VV-polarized images. Also, the capability of retrieving the atmospheric rolls orientation in VV-polarization is found to be sensitive to incidence angle, with better performances for larger incidence angles. Thus, there is the potential to retrieve the storm's wind directions using a combination of the VH- and VV-polarized SAR observations. In this article, we use the local gradient method to estimate tropical cyclone (TC) wind directions from C-band RADARSAT-2 and Sentinel-1A dual-polarization (VV + VH) SAR imagery. As a case study, wind directions with a spatial resolution of 25 km are derived by using both wide-swath VV- and VH-polarized SAR imagery over two hurricanes (Earl and Bertha) and one Typhoon (Meranti). We compare wind directions derived from ten dual-polarization SAR images with collocated wind directions from buoys, Global Positioning System (GPS) dropsondes, scatterometer, and radiometer. Statistical comparisons show that the wind direction bias and root-mean-square error are, respectively, -0.54° and 14.78° for VV-polarization, 0.38° and 14.25° for VH-polarization, 0.20° and 13.30° for VV- and VH-polarization, suggesting dual-polarization SAR is more suitable for the estimation of TC wind directions than VV- or VH-polarization SAR.
  • Source:
    IEEE Transactions on Geoscience and Remote Sensing, 58(2), 1450-1462
  • DOI:
  • ISSN:
    0196-2892;1558-0644;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1