U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Tidal and Nontidal Marsh Restoration: A Trade‐Off Between Carbon Sequestration, Methane Emissions, and Soil Accretion

Supporting Files


Details

  • Journal Title:
    Journal of Geophysical Research: Biogeosciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Support for coastal wetland restoration projects that consider carbon (C) storage as a climate mitigation benefit is growing as coastal wetlands are sites of substantial C sequestration. However, the climate footprint of wetland restoration remains controversial as wetlands can also be large sources of methane (CH4). We quantify the vertical fluxes of C in restored fresh and oligohaline nontidal wetlands with managed hydrology and a tidal euhaline marsh in California's San Francisco Bay‐Delta. We combine the use of eddy covariance atmospheric flux measurements with 210Pb‐derived soil C accumulation rates to quantify the C sequestration efficiency of restored wetlands and their associated climate mitigation service. Nontidal managed wetlands were the most efficient in burying C on‐site, with soil C accumulation rates as high as their net atmospheric C uptake (−280 ± 90 and −350 ± 150 g C m−2 yr−1). In contrast, the restored tidal wetland exhibited lower C burial rates over decadal timescales (70 ± 19 g C m−2 yr−1) that accounted for ∼13%–23% of its annual C uptake, suggesting that the remaining fraction is exported via lateral hydrologic flux. From an ecosystem radiative balance perspective, the restored tidal wetland showed a > 10 times higher CO2‐sequestration to CH4‐emission ratio than the nontidal managed wetlands. Thus overall, tidal wetland restoration resulted in a negative radiative forcing (cooling) through increased soil C accumulation, while nontidal wetland restoration led to an early positive forcing (warming) through increased CH4 emissions potentially lasting between 2.1 ± 2.0 to 8 ± 4 decades.
  • Source:
    Journal of Geophysical Research: Biogeosciences, 126(12)
  • DOI:
  • ISSN:
    2169-8953 ; 2169-8961
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:f951f12cebc021a01e3b4b2181ebf0b41bb64c20df02dbea5a5fcdcfb06ac74ff5ba9df07e0d24c73556862cc097efa7d468fb3bab0195a89c1d6c0570eeb91b
  • Download URL:
  • File Type:
    Filetype[PDF - 1.77 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.