Daytime variation in the aerosol indirect effect for warm marine boundary layer clouds in the eastern North Atlantic
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Daytime variation in the aerosol indirect effect for warm marine boundary layer clouds in the eastern North Atlantic

Filetype[PDF-6.12 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Warm boundary layer clouds in the eastern North Atlantic region exhibit significant diurnal variations in cloud properties. However, the diurnal cycle of the aerosol indirect effect (AIE) for these clouds remains poorly understood. This study takes advantage of recent advancements in the spatial resolution of geostationary satellites to explore the daytime variation in the AIE by estimating the cloud susceptibilities to changes in cloud droplet number concentration (Nd). Cloud retrievals for the month of July over 4 years (2018–2021) from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat-11 over this region are analyzed. Our results reveal a significant “U-shaped” daytime cycle in susceptibilities of the cloud liquid water path (LWP), cloud albedo, and cloud fraction. Clouds are found to be more susceptible to Nd perturbations at noon and less susceptible in the morning and evening. The magnitude and sign of cloud susceptibilities depend heavily on the cloud state defined by cloud LWP and precipitation conditions. Non-precipitating thin clouds account for 44 % of all warm boundary layer clouds in July, and they contribute the most to the observed daytime variation. Non-precipitating thick clouds are the least frequent cloud state (10 %), and they exhibit more negative LWP and albedo susceptibilities compared to thin clouds. Precipitating clouds are the dominant cloud state (46 %), but their cloud susceptibilities show minimal variation throughout the day. We find evidence that the daytime variation in LWP and albedo susceptibilities for non-precipitating clouds is influenced by a combination of the diurnal transition between non-precipitating thick and thin clouds and the “lagged” cloud responses to Nd perturbations. The daytime variation in cloud fraction susceptibility for non-precipitating thick clouds can be attributed to the daytime variation in cloud morphology (e.g., overcast or broken). The dissipation and development of clouds do not adequately explain the observed variation in cloud susceptibilities. Additionally, daytime variation in cloud susceptibility is primarily driven by variation in the intensity of cloud response rather than the frequency of occurrence of cloud states. Our results imply that polar-orbiting satellites with an overpass time at 13:30 LT underestimate daytime mean values of cloud susceptibility, as they observe susceptibility daily minima in the study region.
  • Source:
    Atmospheric Chemistry and Physics, 24(5), 2913-2935
  • DOI:
  • ISSN:
    1680-7324
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1