Estimating Ground Elevation in Coastal Dunes from High-Resolution UAV-LIDAR Point Clouds and Photogrammetry
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Estimating Ground Elevation in Coastal Dunes from High-Resolution UAV-LIDAR Point Clouds and Photogrammetry

Filetype[PDF-4.22 MB]



Details:

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Coastal dune environments play a critical role in protecting coastal areas from damage associated with flooding and excessive erosion. Therefore, monitoring the morphology of dunes is an important coastal management operation. Traditional ground-based survey methods are time-consuming, and data must be interpolated over large areas, thus limiting the ability to assess small-scale details. High-resolution uncrewed aerial vehicle (UAV) photogrammetry allows one to rapidly monitor coastal dune elevations at a fine scale and assess the vulnerability of coastal zones. However, photogrammetric methods are unable to map ground elevations beneath vegetation and only provide elevations for bare sand areas. This drawback is significant as vegetated areas play a key role in the development of dune morphology. To provide a complete digital terrain model for a coastal dune environment at Topsail Hill Preserve in Florida’s panhandle, we employed a UAV, equipped with a laser scanner and a high-resolution camera. Along with the UAV survey, we conducted a RTK–GNSS ground survey of 526 checkpoints within the survey area to serve as training/testing data for various machine-learning regression models to predict the ground elevation. Our results indicate that a UAV–LIDAR point cloud, coupled with a genetic algorithm provided the most accurate estimate for ground elevation (mean absolute error ± root mean square error, MAE ± RMSE = 7.64 ± 9.86 cm).
  • Source:
    Remote Sensing, 15(1), 226
  • DOI:
  • ISSN:
    2072-4292
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1