Fish predation hinders the success of coral restoration efforts using fragmented massive corals
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Fish predation hinders the success of coral restoration efforts using fragmented massive corals

Filetype[PDF-4.86 MB]



Details:

  • Journal Title:
    PeerJ
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    As coral reefs continue to decline globally, coral restoration practitioners have explored various approaches to return coral cover and diversity to decimated reefs. While branching coral species have long been the focus of restoration efforts, the recent development of the microfragmentation coral propagation technique has made it possible to incorporate massive coral species into restoration efforts. Microfragmentation (i.e., the process of cutting large donor colonies into small fragments that grow fast) has yielded promising early results. Still, best practices for outplanting fragmented corals of massive morphologies are continuing to be developed and modified to maximize survivorship. Here, we compared outplant success among four species of massive corals (Orbicella faveolata, Montastraea cavernosa, Pseudodiploria clivosa, and P. strigosa) in Southeast Florida, US. Within the first week following coral deployment, predation impacts by fish on the small (<5 cm2) outplanted colonies resulted in both the complete removal of colonies and significant tissue damage, as evidenced by bite marks. In our study, 8–27% of fragments from four species were removed by fish within one week, with removal rates slowing down over time. Of the corals that remained after one week, over 9% showed signs of fish predation. Our findings showed that predation by corallivorous fish taxa like butterflyfishes (Chaetodontidae), parrotfishes (Scaridae), and damselfishes (Pomacentridae) is a major threat to coral outplants, and that susceptibility varied significantly among coral species and outplanting method. Moreover, we identify factors that reduce predation impacts such as: (1) using cement instead of glue to attach corals, (2) elevating fragments off the substrate, and (3) limiting the amount of skeleton exposed at the time of outplanting. These strategies are essential to maximizing the efficiency of outplanting techniques and enhancing the impact of reef restoration.
  • Source:
    PeerJ, 8, e9978
  • DOI:
  • ISSN:
    2167-8359
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1