Should I use fixed effects or random effects when I have fewer than five levels of a grouping factor in a mixed-effects model?
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Should I use fixed effects or random effects when I have fewer than five levels of a grouping factor in a mixed-effects model?

Filetype[PDF-1.12 MB]



Details:

  • Journal Title:
    PeerJ
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    As linear mixed-effects models (LMMs) have become a widespread tool in ecology, the need to guide the use of such tools is increasingly important. One common guideline is that one needs at least five levels of the grouping variable associated with a random effect. Having so few levels makes the estimation of the variance of random effects terms (such as ecological sites, individuals, or populations) difficult, but it need not muddy one’s ability to estimate fixed effects terms—which are often of primary interest in ecology. Here, I simulate datasets and fit simple models to show that having few random effects levels does not strongly influence the parameter estimates or uncertainty around those estimates for fixed effects terms—at least in the case presented here. Instead, the coverage probability of fixed effects estimates is sample size dependent. LMMs including low-level random effects terms may come at the expense of increased singular fits, but this did not appear to influence coverage probability or RMSE, except in low sample size (N = 30) scenarios. Thus, it may be acceptable to use fewer than five levels of random effects if one is not interested in making inferences about the random effects terms (i.e. when they are ‘nuisance’ parameters used to group non-independent data), but further work is needed to explore alternative scenarios. Given the widespread accessibility of LMMs in ecology and evolution, future simulation studies and further assessments of these statistical methods are necessary to understand the consequences both of violating and of routinely following simple guidelines.
  • Source:
    PeerJ, 10, e12794
  • DOI:
  • ISSN:
    2167-8359
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1