Effects of Scarification, Phytohormones, Soil Type, and Warming on the Germination and/or Seedling Performance of Three Tamaulipan Thornscrub Forest Species
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Effects of Scarification, Phytohormones, Soil Type, and Warming on the Germination and/or Seedling Performance of Three Tamaulipan Thornscrub Forest Species

Filetype[PDF-7.03 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Plants
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The Tamaulipan thornforests of south Texas and northeast Mexico are an ecologically and economically important conservation hotspot. Thornforest restoration is limited by native tree and shrub seedling availability for planting. Seedling shortages arise from low seed availability and knowledge gaps regarding best practices for germinating and growing the 70+ thornforest species desired for restoration plantings. To fill key knowledge gaps, we investigated three ecologically important thornforest species with low or highly variable germination or seedling survival rates: Ebenopsis ebano, Cordia boissieri, and Zanthoxylum fagara. For each, we quantified the effects of different dosages of chemical seed treatments used to promote germination (sulfuric acid, SA; gibberellic acid, GA; indole-3-butyric acid, IBA) on germination likelihood and timing. We also quantified the effects that these chemical seed treatments, soil media mixture type, and soil warming had on seedling survival, growth, and root morphology. Ebenopsis germination peaked (>90%) with 40–60 min SA treatment. Cordia germination peaked (40%) with 100 mg/L GA treatment. Zanthoxylum germination was negligible across all treatments. Seed molding was rare but stirring during SA treatment reduced Ebenopsis molding by 4%. Ebenopsis seedling survival, height, leaf count, and root morphology were minimally affected by seed treatments, generally reduced by warming, and influenced by soil mix, which also mediated responses to warming. These results suggest improvements to existing practices that could increase Ebenopsis germination by 10–20% and potentially double Cordia germination.
  • Source:
    Plants, 10(8), 1489
  • DOI:
  • ISSN:
    2223-7747
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1