Improved capabilities of global ocean reanalyses for analysing sea level variability near the Atlantic and Gulf of Mexico Coastal U.S.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Improved capabilities of global ocean reanalyses for analysing sea level variability near the Atlantic and Gulf of Mexico Coastal U.S.

Filetype[PDF-37.76 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Frontiers in Marine Science
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Realistic representation of monthly sea level anomalies in coastal regions has been a challenge for global ocean reanalyses. This is especially the case in coastal regions where sea levels are influenced by western boundary currents such as near the U.S. Atlantic Coast and the Gulf of Mexico. For these regions, most ocean reanalyses compare poorly to observations. Problems in reanalyses include errors in data assimilation and horizontal resolutions that are too coarse to simulate energetic currents like the Gulf Stream and Loop Current System. However, model capabilities are advancing with improved data assimilation and higher resolution. Here, we show that some current-generation ocean reanalyses produce monthly sea level anomalies with improved skill when compared to satellite altimetry observations of sea surface heights. Using tide gauge observations for coastal verification, we find the highest skill associated with the GLORYS12 and HYCOM ocean reanalyses. Both systems assimilate altimetry observations and have eddy-resolving horizontal resolutions (1/12°). We found less skill in three other ocean reanalyses (ACCESS-S2, ORAS5, and ORAP6) with coarser, though still eddy-permitting, resolutions (1/4°). The operational reanalysis from ECMWF (ORAS5) and their pilot reanalysis (ORAP6) provide an interesting comparison because the latter assimilates altimetry globally and with more weight, as well as assimilating ocean observations over continental shelves. We find these attributes associated with improved skill near many tide gauges. We also assessed an older reanalysis (CFSR), which has the lowest skill likely due to its lower resolution (1/2°) and lack of altimetry assimilation. ACCESS-S2 likewise does not assimilate altimetry, although its skill is much better than CFSR and only somewhat lower than ORAS5. Since coastal flooding is influenced by sea level anomalies, the recent development of skilful ocean reanalyses on monthly timescales may be useful for better understanding the physical processes associated with flood risks.
  • Source:
    Frontiers in Marine Science, 11
  • DOI:
  • ISSN:
    2296-7745
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1