Impacts of fragment genotype, habitat, and size on outplanted elkhorn coral success under thermal stress
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Impacts of fragment genotype, habitat, and size on outplanted elkhorn coral success under thermal stress

Filetype[PDF-776.97 KB]



Details:

  • Journal Title:
    Marine Ecology Progress Series
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Active coral restoration through coral ‘gardening’ aims to remediate some of the drastic coral cover lost on Caribbean reefs, with increasing attention to the imperiled, iconic foundation species elkhorn coral Acropora palmata. We documented 2 experiments quantifying effects of A. palmata outplant characteristics and habitat on outplant success. Two thermal stress events (summer 2014 and 2015) occurred while the experiments were underway and thus lend insight into environmental interactions and coral restoration outcomes under projected thermal regimes. In the first experiment comparing 2 size classes of a single genotype, smaller fragments produced significantly more live tissue area, experienced less bleaching, and demonstrated equal survivorship compared to larger fragments. The second experiment compared 4 genotypes outplanted to both fore reef and mid-channel patch reef habitats. Genotypes varied significantly in survivorship, bleaching severity, and net change in size, with one (CN2g) performing well in all 3 metrics, and another (SLg) exhibiting poor survivorship, the most bleaching, and smaller changes in size. Overall, bleaching was less severe and survivorship less varied between genotypes in fore reef versus patch reef habitats. Fragments returned to the site of genotype origin did not consistently outperform ‘foreign’ genotypes from a different habitat type. Recognizing unique attributes associated with size and specific genotypes may improve the efficacy of active coral restoration in the face of future climate scenarios.
  • Source:
    Marine Ecology Progress Series, 592, 109-117
  • DOI:
  • ISSN:
    0171-8630;1616-1599;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1