Faunal communities on restored oyster reefs: effects of habitat complexity and environmental conditions
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Faunal communities on restored oyster reefs: effects of habitat complexity and environmental conditions

Filetype[PDF-899.88 KB]



Details:

  • Journal Title:
    Marine Ecology Progress Series
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Wild oyster populations have suffered >85% global loss, and in Chesapeake Bay, only 1% of the historic oyster population remains. In response, efforts to restore oysters and the services they provide, such as water filtration and habitat, have increased. A critical step towards restoring these services is understanding the role of restored reefs in marine ecosystems and determining the factors that affect how species utilize them. In a field survey, we embedded benthic settling trays into restored reefs that varied in structural complexity in 4 rivers in Chesapeake Bay. We retrieved trays after 7 wk to estimate species diversity, density, and biomass of macrofauna; these metrics were then related to structural indices and environmental conditions at each reef. A total of 66 macrofaunal species inhabited restored oyster reefs across all the samples, and reefs supported on average 75.6 g AFDW m-2 and 6356 ind. m-2. Species composition differed significantly among the rivers, and salinity best explained the differences. Salinity and rugosity were significantly and positively related to macrofaunal diversity, while negatively related to fish density. Salinity was also significantly and negatively related to macrofaunal density and biomass, whereas live oyster volume was significantly and positively related to total macrofaunal biomass and density, as well as densities of specific taxa (fish, polychaete, mud crab, mussel). Restored oyster reefs can be productive habitats with this potential varying with both salinity and habitat complexity. Our results suggest that habitat quality and utilization of reefs will be enhanced when habitat complexity of restored oyster reefs is high.
  • Source:
    Marine Ecology Progress Series, 590, 35-51
  • DOI:
  • ISSN:
    0171-8630;1616-1599;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1