U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Long-term Bering Sea environmental variability revealed by a centennial-length biochronology of Pacific ocean perch Sebastes alutus

Public Domain
File Language:


Details

  • Journal Title:
    Climate Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The productivity and functioning of Bering Sea marine ecosystems are tightly coupled to decadal-scale environmental variability, as exemplified by the profound changes in community composition that followed the 1976-1977 shift from a cool to a warm climate regime. Longer-term ecosystem dynamics, including the extent to which this regime shift was exceptional in the context of the past century, remain poorly described due to a lack of multi-decadal biological time series. To explore the impact of decadal regime shifts on higher trophic levels, we applied dendrochronology (tree-ring science) techniques to the otolith growth-increment widths of Pacific ocean perch Sebastes alutus (POP) collected from the continental slope of the eastern Bering Sea. After crossdating, 2 chronology development techniques were applied: (1) a regional curve standardization (RCS) approach designed to retain as much low-frequency variability as possible, and (2) an individual-detrending approach that maximized interannual synchrony among samples. Both chronologies spanned the years 1919-2006 and were significantly (p < 0.001) and positively correlated with sea surface temperature (March-December). The RCS chronology showed a transition from relatively slow to fast growth after 1976-1977. In both chronologies, the highest observed growth values immediately followed the regime shift, suggesting that this event had a critical and lasting impact on growth of POP. This growth pulse was, however, not shared by a previously published yellowfin sole Limanda aspera chronology (1969-2006) from the eastern Bering Sea shelf, indicating species- or site-specific responses. Ultimately, these chronologies provide a long-term perspective and underscore the susceptibility of fish growth to extreme low-frequency events.
  • Source:
    Climate Research, 71(1), 33-45
  • DOI:
  • ISSN:
    0936-577X ; 1616-1572
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:9e528f4571ad9b81f51849bd8edb74fd0d8f44112aa5cd24398496ed037f61c0d682eee0b11d51ed1f56dabda0f8d69417d3e7c1bd2851180443d7f46d57e8c1
  • Download URL:
  • File Type:
    Filetype[PDF - 899.43 KB ]
File Language:
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.