The Relationship between Northeast Pacific Sea Surface Temperatures, Synoptic Evolution, and Surface Air Temperatures over the Pacific Northwest
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Relationship between Northeast Pacific Sea Surface Temperatures, Synoptic Evolution, and Surface Air Temperatures over the Pacific Northwest

Filetype[PDF-7.88 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The development of sea surface temperature (SST) anomalies over the northeast Pacific and their impacts on lower-tropospheric air temperatures over the Pacific Northwest are examined. Northeast Pacific SST anomalies are influenced by the synoptic-scale flow, with high pressure and weak surface winds associated with developing warm SST anomalies, while large pressure gradients and strong surface winds result in SST declines. SST over the northeast Pacific correlates significantly with surface air temperatures over the Pacific Northwest, with correlations increasing when high-frequency variability is filtered out. The correlations between unfiltered time series of SST and surface air temperature are largest for a zero-day lag and are strongest near the coast, contrasting with weaker correlations over the Columbia basin east of the Cascade Mountains. SST correlations with minimum surface air temperature are largest during the warm season, and maximum temperature correlations are highest in March; both have low correlations during autumn. Model simulations of periods with warm and cold northeast Pacific SST anomalies possess lower-tropospheric air temperature warming or cooling over the coastal zone, with SST influence weakening east of the Cascade crest. Eastern Pacific SST anomalies influence sea level pressure and lower-tropospheric heights, with warm SST anomalies resulting in simulated lowered pressure near the surface and increased heights aloft. The relationship between northeast Pacific SST and surface air temperature over land evince complex feedbacks: SST temperature anomalies can be advected inland from the Pacific, the SST anomalies can influence the synoptic-scale flow that affects the SST anomalies, and the synoptic-scale anomalies that produce the SST anomalies can directly influence temperatures over land.
  • Source:
    Weather and Forecasting, 37(10), 1741-1759
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1