The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Simulated Diurnal Pulses in Hurricane Dorian (2019)
-
2023
-
Source: Monthly Weather Review, 151(11), 2869-2882
Details:
-
Journal Title:Monthly Weather Review
-
Personal Author:
-
NOAA Program & Office:
-
Description:Radially outward-propagating, diurnal pulses in tropical cyclones (TCs) are associated with TC intensity and structural changes. The pulses are observed to feature either cloud-top cooling or warming, so-called cooling pulses (CPs) or warming pulses (WPs), respectively, with CPs posing a greater risk for hazardous weather because they often assume characteristics of tropical squall lines. The current study evaluates the characteristics and origins of simulated CPs using various convection-permitting Weather Research and Forecasting (WRF) Model simulations of Hurricane Dorian (2019), which featured several CPs and WPs over the tropical Atlantic Ocean. CP evolution is tested against choice of microphysics parameterization, whereby the Thompson and Morrison schemes present distinct mechanisms for CP creation and propagation. Specifically, the Thompson CP is convectively coupled and propagates outward with a rainband within 100–300 km of the storm center. The Morrison CP is restricted to the cirrus canopy and propagates radially outward in the upper-level outflow layer, unassociated with any rainband, within 200–600 km of the storm center. The Thompson simulation better represents the observations of this particular event, but it is speculated that CPs in nature can resemble characteristics from either MP scheme. It is, therefore, necessary to evaluate pulses beyond just brightness temperature (e.g., reflectivity, rain rate), especially within simulations where full fields are available.
-
Source:Monthly Weather Review, 151(11), 2869-2882
-
DOI:
-
ISSN:0027-0644;1520-0493;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: