Improving the Analysis and Forecast of Hurricane Dorian (2019) with Simultaneous Assimilation of GOES-16 All-Sky Infrared Brightness Temperatures and Tail Doppler Radar Radial Velocities
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Improving the Analysis and Forecast of Hurricane Dorian (2019) with Simultaneous Assimilation of GOES-16 All-Sky Infrared Brightness Temperatures and Tail Doppler Radar Radial Velocities

Filetype[PDF-5.47 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Recent studies have shown that the assimilation of all-sky infrared (IR) observations can be beneficial for tropical cyclone analyses and predictions. The assimilation of Tail Doppler Radar (TDR) radial velocity observations has also been shown to improve tropical cyclone analyses and predictions; however, there is a paucity of literature on the impacts of simultaneously assimilating them with all-sky infrared IR brightness temperatures (BTs). This study examines the impacts of assimilating combinations of GOES-16 all-sky IR brightness temperatures, NOAA P-3 TDR radial velocities, and conventional observations from the Global Telecommunications System (GTS) on the analyses and forecasts of Hurricane Dorian (2019). It is shown that including IR and/or TDR observations on top of conventional GTS observations significantly reduces both track and intensity forecast errors. Track errors are reduced the most (25% at lead times greater than 48 h) when TDR and GTS observations are assimilated. In terms of intensity, errors are always lower at lead times greater than 48 h when IR BTs are assimilated. Simultaneously assimilating TDR and IR observations has the potential to further improve the intensity forecast by as much as 37% at a lead time of 48 h to 72 h. The improved intensity forecasts produced by the experiments assimilating all three observation sources are shown to be a result of the competing effects of IR assimilation producing an overly broad area of strong cyclonic circulation and TDR assimilation constraining that circulation to a more realistic size and intensity. Interestingly, the order in which observations are assimilated has non-negligible impacts on the analyses and forecasts of Dorian.
  • Source:
    Monthly Weather Review (2021)
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1