Impact of Increasing Horizontal and Vertical Resolution during the HWRF Hybrid EnVar Data Assimilation on the Analysis and Prediction of Hurricane Patricia (2015)
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Impact of Increasing Horizontal and Vertical Resolution during the HWRF Hybrid EnVar Data Assimilation on the Analysis and Prediction of Hurricane Patricia (2015)

Filetype[PDF-6.61 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Although numerous studies have demonstrated that increasing model spatial resolution in free forecasts can potentially improve tropical cyclone (TC) intensity forecasts, studies on the impact of model resolution during data assimilation (DA) on TC prediction are lacking. In this study, using the ensemble-variational DA system for the Hurricane Weather Research and Forecasting (HWRF) Model, we investigated the individual impact of increasing the model resolution of first guess (FG) and background ensemble (BE) forecasts during DA on initial analyses and subsequent forecasts of Hurricane Patricia (2015). The impacts were compared between horizontal and vertical resolutions and also between the tropical storm (TS) and hurricane assimilation during Patricia. The results show that increasing the horizontal or vertical resolution in FG has a larger impact than increasing the resolution in BE on improving the analyzed TC intensity and structure for the hurricane stage. The result is reversed for the TS stage. These results are attributed to the effectiveness of increasing the FG resolution in intensifying the background vortex for the hurricane stage relative to the TS stage. Increasing the BE resolution contributes to improving the analyzed intensity through the better-resolved background correlation structure for both the hurricane and TS stages. Increasing horizontal resolution has an overall larger effect than increasing vertical resolution in improving the analysis at the hurricane stage and their effects are close for the analysis at the TS stage. Additionally, the more accurately analyzed primary circulation, secondary circulation, and warm-core structures via the increased resolution in DA lead to improved TC intensity forecasts.
  • Source:
    Monthly Weather Review, 149(2), 419-441
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1