The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Evaluation of Atmosphere and Ocean Initial Condition Uncertainty and Stochastic Exchange Coefficients on Ensemble Tropical Cyclone Intensity Forecasts
-
2016
-
Source: Monthly Weather Review, 144(9), 3487-3506
Details:
-
Journal Title:Monthly Weather Review
-
Personal Author:
-
NOAA Program & Office:
-
Description:Tropical cyclone (TC) intensity forecasts are impacted by errors in atmosphere and ocean initial conditions and the model formulation, which motivates using an ensemble approach. This study evaluates the impact of uncertainty in atmospheric and oceanic initial conditions, as well as stochastic representations of the drag Cd and enthalphy Ck exchange coefficients on ensemble Advanced Hurricane WRF (AHW) TC intensity forecasts of multiple Atlantic TCs from 2008 to 2011. Each ensemble experiment is characterized by different combinations of either deterministic or ensemble atmospheric and/or oceanic initial conditions, as well as fixed or stochastic representations of Cd or Ck. Among those experiments with a single uncertainty source, atmospheric uncertainty produces the largest standard deviation in TC intensity. While ocean uncertainty leads to continuous growth in ensemble standard deviation, the ensemble standard deviation in the experiments with Cd and Ck uncertainty levels off by 48 h. Combining atmospheric and oceanic uncertainty leads to larger intensity standard deviation than atmosphere or ocean uncertainty alone and preferentially adds variability outside of the TC core. By contrast, combining Cd or Ck uncertainty with any other source leads to negligible increases in standard deviation, which is mainly due to the lack of spatial correlation in the exchange coefficient perturbations. All of the ensemble experiments are deficient in ensemble standard deviation; however, the experiments with combinations of uncertainty sources generally have an ensemble standard deviation closer to the ensemble-mean errors.
-
Source:Monthly Weather Review, 144(9), 3487-3506
-
DOI:
-
ISSN:0027-0644;1520-0493;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: