Kinematic Structure of Mesovortices in the Eyewall of Hurricane Ike (2008) Derived from Ground-Based Dual-Doppler Analysis
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Kinematic Structure of Mesovortices in the Eyewall of Hurricane Ike (2008) Derived from Ground-Based Dual-Doppler Analysis

Filetype[PDF-4.80 MB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Previous work has shown that vorticity mixing in the tropical cyclone (TC) inner core can promote mesovortex (MV) formation and impact storm intensity. Observations of MVs have largely been serendipitous but are necessary to improve understanding of these features and their role in TC dynamics. This study presents nearly 10 h of ground-based dual-Doppler analysis of MVs in the eyewall of Hurricane Ike (2008) near and during landfall. Derived 3D winds, vertical vorticity, horizontal divergence, and perturbation pressures are analyzed. Results indicate persistent kinematic field arrangements and evolving vertical structures. Perturbation pressure retrievals suggest local pressure minima associated with the MVs. Preferential updraft locations appear to transition cyclonically about the local vorticity maximum as the MVs progress around the eye. Based on published observational datasets, the dual-Doppler updraft magnitudes in Ike’s MVs are within the top 5%–10% of TC vertical velocities. The MVs are marked by peak vorticity in the lowest 2 km and contain vertically coherent vorticity structures extending to 8 km AGL. After prolonged land interaction, the MV structures deteriorate. First, the vertical extent of localized vorticity diminishes, followed by a deterioration in the prelandfall characteristic kinematic arrangements. This supports the notion that the replenishment of a high vorticity annulus contributes to MV production and maintenance, and when the elevated vorticity aloft is not maintained, MV kinematic patterns become less consistent. It is unclear whether the decay of the vertically coherent vorticity structures occurs in response to land interaction, TC inner core processes, or some combination of both.
  • Source:
    Monthly Weather Review, 144(11), 4245-4263
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1