Relationships among Four-Dimensional Hybrid Ensemble–Variational Data Assimilation Algorithms with Full and Approximate Ensemble Covariance Localization
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Relationships among Four-Dimensional Hybrid Ensemble–Variational Data Assimilation Algorithms with Full and Approximate Ensemble Covariance Localization

Filetype[PDF-443.45 KB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Ensemble–variational data assimilation algorithms that can incorporate the time dimension (four-dimensional or 4D) and combine static and ensemble-derived background error covariances (hybrid) are formulated in general forms based on the extended control variable and the observation-space-perturbation approaches. The properties and relationships of these algorithms and their approximated formulations are discussed. The main algorithms discussed include the following: 1) the standard ensemble 4DVar (En4DVar) algorithm incorporating ensemble-derived background error covariance through the extended control variable approach, 2) the 4DEnVar neglecting the time propagation of the extended control variable (4DEnVar-NPC), 3) the 4D ensemble–variational algorithm based on observation space perturbation (4DEnVar), and 4) the 4DEnVar with no propagation of covariance localization (4DEnVar-NPL). Without the static background error covariance term, none of the algorithms requires the adjoint model except for En4DVar. Costly applications of the tangent linear model to localized ensemble perturbations can be avoided by making the NPC and NPL approximations. It is proven that En4DVar and 4DEnVar are mathematically equivalent, while 4DEnVar-NPC and 4DEnVar-NPL are mathematically equivalent. Such equivalences are also demonstrated by single-observation assimilation experiments with a 1D linear advection model. The effects of the non-flow-following or stationary localization approximations are also examined through the experiments.
  • Source:
    Monthly Weather Review, 144(2), 591-606
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1