The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Overview of Bering and Chukchi Sea Wave States for Four Severe Storms following Common Synoptic Tracks
-
2016
-
Source: Journal of Atmospheric and Oceanic Technology, 33(2), 283-302
Details:
-
Journal Title:Journal of Atmospheric and Oceanic Technology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Strong storms occur regularly over the ocean west of Alaska. These systems often loiter, generating persistent winds that can result in fully developed marine states that can maximize damage and hazard potential. Detailed analyses of storm events in terms of the resultant wave states are uncommon. This analysis examines the wave states associated with four particular storm events over the Bering and Chukchi Seas: October 2004, September 2005, and November 2009, and a September 2011 event that exhibited north winds. For each event a brief synoptic overview is presented followed by consideration of the resultant wave state, including parameters such as wave steepness. Wave data come from NOAA’s WAVEWATCH III (WW3) operational global ocean wave model, implemented for scenario use at the Arctic Region Supercomputing Center at the University of Alaska Fairbanks. In situ data are available from several National Data Buoy Center buoys and a wave buoy located in the Bering Strait, funded by the U.S. Environmental Protection Agency and NOAA and deployed for a few months in 2011. WW3 accurately captures the timing and evolution of the observed wave action (onset, growth, peak, and decline of large, steep wind waves) for each of the storm events. As per previous climatologically oriented studies, WW3 is found to underestimate significant wave heights on the order of 0.5 m or less. Also larger discrepancies, on the order of 1–2 m, are observed during periods of peak significant wave heights (Hs). In some cases WW3 overestimated Hs, especially during periods of rapid Hs decline.
-
Source:Journal of Atmospheric and Oceanic Technology, 33(2), 283-302
-
DOI:
-
ISSN:0739-0572;1520-0426;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: