Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data

Filetype[PDF-4.86 MB]



Details:

  • Journal Title:
    Journal of Hydrometeorology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Recent developments in “headline-making” deep neural networks (DNNs), specifically convolutional neural networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts of real-time observations to characterize spatiotemporal structures of surface precipitation. This study aims to develop a CNN algorithm, named Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP), that ingests direct satellite passive microwave (PMW) brightness temperatures (Tbs) at emission and scattering frequencies combined with infrared (IR) Tbs from geostationary satellites and surface information to automatically extract geospatial features related to the precipitable clouds. These features allow the end-to-end Deep-STEP algorithm to instantaneously map surface precipitation intensities with a spatial resolution of 4 km. The main advantages of Deep-STEP, as compared to current state-of-the-art techniques, are 1) it learns and estimates complex precipitation systems directly from raw measurements in near–real time, 2) it uses the automatic spatial neighborhood feature extraction approach, and 3) it fuses coarse-resolution PMW footprints with IR images to reliably retrieve surface precipitation at a high spatial resolution. We anticipate our proposed DNN algorithm to be a starting point for more sophisticated and efficient precipitation retrieval systems in terms of accuracy, fine spatial pattern detection skills, and computational costs.
  • Source:
    Journal of Hydrometeorology, 23(4), 597-617
  • DOI:
  • ISSN:
    1525-755X;1525-7541;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1