The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Comparison of the GPCP 1DD Precipitation Product and NEXRAD Q2 Precipitation Estimates over the Continental United States
-
2016
-
-
Source: Journal of Hydrometeorology, 17(6), 1837-1853
Details:
-
Journal Title:Journal of Hydrometeorology
-
Personal Author:
-
NOAA Program & Office:
-
Description:This study compares the Global Precipitation Climatology Project (GPCP) 1 Degree Daily (1DD) precipitation estimates over the continental United States (CONUS) with National Mosaic and Multi-Sensor Quantitative Precipitation Estimation (NMQ) Next Generation (Q2) estimates. Spatial averages of monthly and yearly accumulated precipitation were computed based on daily estimates from six selected regions during the period 2010–12. Both Q2 and GPCP daily precipitation estimates show that precipitation amounts over southern regions (<40°N) are generally larger than northern regions (≥40°N). Correlation coefficients for daily estimates over selected regions range from 0.355 to 0.516 with mean differences (GPCP − Q2) varying from −0.86 to 0.99 mm. Better agreements are found in monthly estimates with the correlations varying from 0.635 to 0.787. For spatially averaged precipitation values averaged from grid boxes within selected regions, GPCP and Q2 estimates are well correlated, especially for monthly accumulated precipitation, with strong correlations ranging from 0.903 to 0.954. The comparisons between two datasets are also conducted for warm (April–September) and cold (October–March) seasons. During the warm season, GPCP estimates are 9.7% less than Q2 estimates, while during the cold season GPCP estimates exceed Q2 estimates by 6.9%. For precipitation over the CONUS, although annual means are close (978.54 for Q2 vs 941.79 mm for GPCP), Q2 estimates are much larger than GPCP over the central and southern United States and less than GPCP estimates in the northeastern United States. These results suggest that Q2 may have difficulties accurately estimating heavy rain and snow events, while GPCP may have an inability to capture some intense precipitation events, which warrants further investigation.
-
Source:Journal of Hydrometeorology, 17(6), 1837-1853
-
DOI:
-
ISSN:1525-755X;1525-7541;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: