A Global Perspective of Tropical Cyclone Precipitation in Reanalyses
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A Global Perspective of Tropical Cyclone Precipitation in Reanalyses

Filetype[PDF-12.55 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study compares the spread in climatological tropical cyclone (TC) precipitation across eight different reanalysis datasets: NCEP-CFSR, ERA-20C, ERA-40, ERA5, ERA-Interim, JRA-55, MERRA-2, and NOAA-20C. TC precipitation is assigned using manual tracking via a fixed 500-km radius from each TC center. The reanalyses capture similar general spatial patterns of TC precipitation and TC precipitation fraction, defined as the fraction of annual precipitation assigned to TCs, and the spread in TC precipitation is larger than the spread in total precipitation across reanalyses. The spread in TC precipitation relative to the inter-reanalysis mean TC precipitation, or relative spread, is larger in the east Pacific than in the west Pacific. Partitioned by reanalysis intensity, the largest relative spread across reanalyses in TC precipitation is from high-intensity TCs. In comparison with satellite observations, reanalyses show lower climatological mean annual TC precipitation over most areas. A comparison of area-averaged precipitation rate in TCs composited over reanalysis intensity shows the spread across reanalyses is larger for higher intensity TCs. Testing the sensitivity of TC precipitation assignment to tracking method shows that climatological mean annual TC precipitation is systematically larger when assigned via manual tracking versus objective tracking. However, this tendency is minimized when TC precipitation is normalized by TC density. Overall, TC precipitation in reanalyses is affected by not only horizontal output resolution or any TC preprocessing, but also data assimilation and parameterization schemes. The results indicate that improvements in the representation of TCs and their precipitation in reanalyses are needed to improve overall precipitation.
  • Source:
    Journal of Climate, 34(21), 8461-8480
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1