Two Distinct Types of 10-30-day Persistent Heavy Rainfall Events over the Yangtze River Valley
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Two Distinct Types of 10-30-day Persistent Heavy Rainfall Events over the Yangtze River Valley

Filetype[PDF-8.39 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Large-scale circulation anomalies associated with 10-30-day filtered persistent heavy rainfall events (PHREs) over the middle and lower reaches of the Yangtze River Valley (MLYV) in boreal summer for the period of 1961-2017 were investigated. Two distinct types of PHREs were identified based on configurations of anomalies in western Pacific subtropical high (WPSH) and South Asian High (SAH) during the peak wet phase. One type named as PSAH is characterized by eastward extension of the SAH while the other named as NSAH is featured by westward retreat of the SAH, and they both exhibit westward extension of the WPSH. Both types of PHREs are dominated by Mei-yu frontal systems. The lower-level circulation anomalies play a crucial role in initiating rainfall but through different processes. Prior to rainfall occurrence, a strong anticyclonic circulation anomaly is over the western North Pacific (WNP) for the PSAH events and the related southwesterly wind anomaly prevails over the south-eastern China, which advects moisture into the MLYV, moistens the boundary layer, and induces atmospheric convective instability. For the NSAH events, the WNP anticyclonic circulation is weak while a strong northerly wind is observed north of the MLYV. It brings cold air mass southward, favoring initiating frontal rainfall over the MLYV. The formation of upper-level circulation anomalies over the MLYV is primarily due to the shift of anomalous circulations from mid-high latitudes. After the rainfall generation, the precipitation would influence the lower- and upper-level circulation anomalies.
  • Source:
    Journal of Climate (2021)
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1