Precipitation Diurnal Cycle over the Maritime Continent Modulated by the Climatological Annual Cycle
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Precipitation Diurnal Cycle over the Maritime Continent Modulated by the Climatological Annual Cycle

Filetype[PDF-8.07 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The modulation of the diurnal cycle (DC) of precipitation over the Maritime Continent (MC) by the background annual cycle mean state was studied for the period of 1998–2014 through observational analyses and high-resolution simulations using the Weather Research and Forecasting (WRF) Model. The observational analyses reveal that there are statistically significant differences in the DC amplitude between boreal winter and summer. The amplitude of precipitation DC reduces by about 35% during boreal summer compared to boreal winter, especially over the MC major islands and adjacent oceans. A precipitation budget analysis indicates that the DC amplitude difference is primarily attributed to vertically integrated convergence of the mean moisture by diurnal winds. The relative roles of the background dynamic and thermodynamic states in causing the enhanced diurnal wind activity in boreal winter are further investigated through idealized WRF simulations. The results show that the seasonal mean background moisture condition is most critical in inducing the winter–summer difference of the precipitation DC over the MC, followed by atmospheric static stability (i.e., vertical temperature gradient) and circulation conditions.
  • Source:
    Journal of Climate, 34(4), 1387-1402
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1