Impacts of Multi-Timescale Circulations on Meridional Moisture Transport
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Impacts of Multi-Timescale Circulations on Meridional Moisture Transport

Filetype[PDF-9.71 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Relative impacts of the climatological annual mean, the climatological annual variation, the synoptic, the intra-seasonal and the inter-annual flows on meridional moisture transport were investigated based on reanalysis data. Due to an in-phase relationship between the poleward wind and specific humidity, the synoptic and intra-seasonal motions contribute about 50% and 30% of the maximum zonal and annual mean poleward moisture transport in the middle latitudes, respectively. The preferred latitudinal location (40°N or S) of the maximum zonal mean moisture transport by the synoptic motion is attributed to the combined effect of the maximum wind variability poleward of 40°N or S in association with atmospheric baroclinic instability and the maximum moisture variability equatorward of 40°N or S in association with the anomalous advection of the mean moisture. While the MJO and ENSO have a small contribution to the long-term mean transport, they may strongly affect regional moisture transport through interaction with the mean moisture and through the modulation to higher-frequency modes. A statistical relationship between tropical cyclone (TC) moisture and intensity was constructed based on a large number of high-resolution Weather Research and Forecasting (WRF) model simulations, and the so-derived relationship was further applied to estimate TC moisture transport. It is found that TC transport accounts for about 30% (53%) of the climatological seasonal mean total moisture transport over key northern (southern) hemispheric TC track regions in the northern (southern) hemispheric TC season.
  • Source:
    Journal of Climate (2021)
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1