Arctic Sea Ice Patterns Driven by the Asian Summer Monsoon
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Arctic Sea Ice Patterns Driven by the Asian Summer Monsoon

Filetype[PDF-5.21 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The fluctuation of Arctic sea ice concentration (SIC) has been associated with changes in ocean circulation, ecology, and Northern Hemisphere climate. Prediction of sea ice melting patterns is of great societal interest, but such prediction remains difficult because the factors controlling year-to-year sea ice variability remain unresolved. Distinct monsoon–Arctic teleconnections modulate summer Arctic SIC largely by changing wind-forced sea ice transport. East Asian monsoon rainfall produces a northward-propagating meridional Rossby wave train extending into the Siberian Arctic. The Indian summer monsoon excites an eastward-propagating circumglobal teleconnection along the subtropical jet, reaching the North Atlantic before bifurcating into the Arctic. The remote Asian monsoon variations induce a dominant dipole sea ice melt pattern in which the North Atlantic–European Arctic contrasts with the Siberian–North American Arctic. The monsoon-related sea ice variations are complementary and comparable in magnitude to locally forced Arctic Oscillation variability. The monsoon–Arctic link will improve seasonal prediction of summer Arctic sea ice and possibly explain long-term sea ice trends associated with the projected increase in Asian monsoon rainfall over the next century.
  • Source:
    Journal of Climate, 29(24), 9097-9112
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1