The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Identification of Convective Boundary Layer Depth over the Great Lakes Region Using Aircraft Observations: A Comparison of Various Methods
-
2024
-
Source: Journal of Applied Meteorology and Climatology, 63(3), 401-423
Details:
-
Journal Title:Journal of Applied Meteorology and Climatology
-
Personal Author:
-
NOAA Program & Office:
-
Description:This study evaluates the methods of identifying the height zi of the top of the convective boundary layer (CBL) during winter (December and January) over the Great Lakes and nearby land areas using observations taken by the University of Wyoming King Air research aircraft during the Lake-Induced Convection Experiment (1997/98) and Ontario Winter Lake-effect Systems (2013/14) field campaigns. Since CBLs facilitate vertical mixing near the surface, the most direct measurement of zi is that above which the vertical velocity turbulent fluctuations are weak or absent. Thus, we use zi from the turbulence method as the “reference value” to which zi from other methods, based on bulk Richardson number (Rib), liquid water content, and vertical gradients of potential temperature, relative humidity, and water vapor mixing ratio, are compared. The potential temperature gradient method using a threshold value of 0.015 K m−1 for soundings over land and 0.011 K m−1 for soundings over lake provided the estimates of zi that are most consistent with the turbulence method. The Rib threshold-based method, commonly used in numerical simulation studies, underestimated zi. Analyzing the methods’ performance on the averaging window zavg we recommend using zavg = 20 or 50 m for zi estimations for lake-effect boundary layers. The present dataset consists of both cloudy and cloud-free boundary layers, some having decoupled boundary layers above the inversion top. Because cases of decoupled boundary layers appear to be formed by nearby synoptic storms, we recommend use of the more general term, elevated mixed layers.
-
Source:Journal of Applied Meteorology and Climatology, 63(3), 401-423
-
DOI:
-
ISSN:1558-8424;1558-8432;
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: