The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Selection for oligotrophy among bacteria inhabiting host microbiomes
-
2023
-
-
Source: mBio, 14(5)
Details:
-
Journal Title:mBio
-
Personal Author:
-
NOAA Program & Office:
-
Description:Host microbiomes are important regulators of organismal fitness, physiology, and ecology. Microbiomes promote the fitness of their host in part by buffering the host from the full effects of fluctuating conditions and stressors imposed by the external environment. Whether the host conversely serves as a buffer for their associated microbes against variation in the external environment is less clear. Here, we test if bacteria inhabiting the microbiome of a host are locally adapted to nutrient levels in their surrounding external environment. We used a system in which the host, the phytoplankter Microcystis aeruginosa, has strains that are locally adapted to low-nutrient versus high-nutrient lakes. Assessing 40 metagenome-assembled genomes belonging to four taxonomic groups of heterotrophic bacteria residing within the host microbiome, we found consistent phylogenetic divergence between strains originating from low-nutrient versus high-nutrient environments. Bacteria found in association with low-nutrient host genotypes obtained from low-nutrient lakes demonstrated genome streamlining, including reduced genome size and fewer sigma factors. These bacterial genomes have features that would facilitate survival in low-nutrient lakes, including (i) greater number of alkaline phosphatase genes that are essential for phosphorus acquisition and (ii) positive selection within genes involved in phosphorus metabolism. Overall, our results demonstrate that despite living in close association with host organisms, bacteria residing within microbiomes may have evolved and undergone environmental selection to stressors external to their host, demonstrating similar patterns of adaptation to those that might be expected to develop among free-living bacteria.
-
Source:mBio, 14(5)
-
DOI:
-
ISSN:2150-7511
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: