U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Predicting Slowdowns in Decadal Climate Warming Trends With Explainable Neural Networks

Supporting Files


Details

  • Journal Title:
    Geophysical Research Letters
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The global mean surface temperature (GMST) record exhibits both interannual to multidecadal variability and a long‐term warming trend due to external climate forcing. To explore the predictability of temporary slowdowns in decadal warming, we apply an artificial neural network (ANN) to climate model data from the Community Earth System Model Version 2 Large Ensemble. Here, an ANN is tasked with whether or not there will be a slowdown in the rate of the GMST trend by using maps of ocean heat content (OHC) at the onset. Through a machine learning explainability method, we find the ANN is learning off‐equatorial patterns of anomalous OHC that resemble transitions in the phase of the Interdecadal Pacific Oscillation in order to make slowdown predictions. Finally, we test our ANN on observed historical data, which further reveals how explainable neural networks are useful tools for understanding decadal variability in both climate models and observations.
  • Source:
    Geophysical Research Letters, 49(9)
  • DOI:
  • ISSN:
    0094-8276 ; 1944-8007
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:10e48b6c20f98729986b81f85144aa4b76200e2e1e59c3b068918ac7de4b0749268e0a8203ff13a65a45fc10c449e1f5204eeaa626231dce18b47bd319a75ad0
  • Download URL:
  • File Type:
    Filetype[PDF - 2.45 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.