Coalescence Scavenging Drives Droplet Number Concentration in Southern Ocean Low Clouds
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Coalescence Scavenging Drives Droplet Number Concentration in Southern Ocean Low Clouds

Filetype[PDF-1.12 MB]



Details:

  • Journal Title:
    Geophysical Research Letters
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Cloud droplet number concentration (Nd) is a key microphysical property that is largely controlled by the balance between sources and sinks of aerosols that serve as cloud condensation nuclei (CCN). Despite being a key sink of CCN, the impact of coalescence scavenging on Southern Ocean (SO) cloud is poorly known. We apply a simple source‐and‐sink budget model based on parameterizations to austral summer aircraft observations to test model behavior and examine the relative influence of processes that determine Nd in SO stratocumulus clouds. The model predicts Nd with little bias and a correlation coefficient of ∼0.7 compared with observations. Coalescence scavenging is found to be an important sink of CCN in both liquid and mixed‐phase precipitating stratocumulus and reduces the predicted Nd by as much as 90% depending on the precipitation rate. The free tropospheric aerosol source controls Nd more strongly than the surface aerosol source during austral summer.
  • Source:
    Geophysical Research Letters, 49(7)
  • DOI:
  • ISSN:
    0094-8276;1944-8007;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at

Version 3.27.1